Global transcriptional responses to cisplatin in Dictyostelium discoideum identify potential drug targets.

نویسندگان

  • Nancy Van Driessche
  • Hannah Alexander
  • Junxia Min
  • Adam Kuspa
  • Stephen Alexander
  • Gad Shaulsky
چکیده

Dictyostelium discoideum is a useful model for studying mechanisms of cisplatin drug sensitivity. Our previous findings, that mutations in sphingolipid metabolism genes confer cisplatin resistance in D. discoideum and in human cells, raised interest in the resistance mechanisms and their implications for cisplatin chemotherapy. Here we used expression microarrays to monitor physiological changes and to identify pathways that are affected by cisplatin treatment of D. discoideum. We found >400 genes whose regulation was altered by cisplatin treatment of wild-type cells, including groups of genes that participate in cell proliferation and in nucleotide and protein metabolism, showing that the cisplatin response is orderly and multifaceted. Transcriptional profiling of two isogenic cisplatin-resistant mutants, impaired in different sphingolipid metabolism steps, showed that the effect of cisplatin treatment was greater than the effect of the mutations, indicating that cisplatin resistance in the mutants is due to specific abilities to overcome the drug effects rather than to general drug insensitivity. Nevertheless, the mutants exhibited significantly different responses to cisplatin compared with the parent, and >200 genes accounted for that difference. Mutations in five cisplatin response genes (sgkB, csbA, acbA, smlA, and atg8) resulted in altered drug sensitivity, implicating novel pathways in cisplatin response. Our data illustrate how modeling complex cellular responses to drugs in genetically stable and tractable systems can uncover new targets with the potential for improving chemotherapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular basis for resistance to the anticancer drug cisplatin in Dictyostelium.

The efficacy of the widely used chemotherapeutic drug cisplatin is limited by the occurrence of drug-resistant tumour cells. To fully exploit the potential of this drug in cancer therapy, it is imperative to understand the molecular basis of cisplatin resistance. Using an insertional mutagenesis technique in cells of Dictyostelium discoideum, we have identified six genes which are involved in c...

متن کامل

Sphingosine kinase regulates the sensitivity of Dictyostelium discoideum cells to the anticancer drug cisplatin.

The drug cisplatin is widely used to treat a number of tumor types. However, resistance to the drug, which remains poorly understood, limits its usefulness. Previous work using Dictyostelium discoideum as a model for studying drug resistance showed that mutants lacking sphingosine-1-phosphate (S-1-P) lyase, the enzyme that degrades S-1-P, had increased resistance to cisplatin, whereas mutants o...

متن کامل

Sphingosine-1-phosphate lyase regulates sensitivity of human cells to select chemotherapy drugs in a p38-dependent manner.

Resistance to cisplatin is a common problem that limits its usefulness in cancer therapy. Molecular genetic studies in the model organism Dictyostelium discoideum have established that modulation of sphingosine kinase or sphingosine-1-phosphate (S-1-P) lyase, by disruption or overexpression, results in altered cellular sensitivity to this widely used drug. Parallel changes in sensitivity were o...

متن کامل

Identification of genes that mediate sensitivity to cisplatin.

Cisplatin (cDDP) is effective against some human tumors, but many are intrinsically resistant and, even among initially sensitive tumors, acquired resistance develops commonly during treatment. It has not been possible to prove which biochemical mechanisms control sensitivity to cDDP. Gene knockout studies in yeast, Dictyostelium discoideum, and mammalian cells have begun to unambiguously ident...

متن کامل

Xpf and Not the Fanconi Anaemia Proteins or Rev3 Accounts for the Extreme Resistance to Cisplatin in Dictyostelium discoideum

Organisms like Dictyostelium discoideum, often referred to as DNA damage "extremophiles", can survive exposure to extremely high doses of radiation and DNA crosslinking agents. These agents form highly toxic DNA crosslinks that cause extensive DNA damage. However, little is known about how Dictyostelium and the other "extremophiles" can tolerate and repair such large numbers of DNA crosslinks. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 39  شماره 

صفحات  -

تاریخ انتشار 2007